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Abstract

The flapwise motion of a cantilever beam with rotary oscillation is analyzed to investigate the dynamic
stability of the beam. The cantilever beam is regarded as a system subjected to parametric excitation
because the angular speed of the cantilever beam varies harmonically. To consider the stiffening effect due
to the centrifugal force, this study adopts the linear partial differential equation of flapwise motion, which is
derived by a modelling method using the stretch deformation instead of the conventional longitudinal
deformation. After the partial differential equation is discretized by the Galerkin method, the method of
multiple scales is applied. Using this method, the stability of the beam is analyzed for the variations of the
oscillating frequency and the maximum angular speed. In addition, to verify the stability results, the time
responses of flapwise motion are computed by the generalized-a time integration method.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the lateral stiffness of cantilever beams is influenced by rigid-body motion.
For instance, a rotating cantilever beam has larger bending stiffness than a stationary cantilever
beam, because rotation yields a stiffening effect due to a centrifugal force. Similarly, when a
cantilever beam swings periodically, that is, oscillates about the axis of rotation, the dynamic
bending stiffness varies harmonically. Therefore, a cantilever beam with rotary oscillation can be
regarded as a parametric excitation system.

ARTICLE IN PRESS

*Corresponding author. Tel.: +82-31-400-5287; fax: +82-31-406-5550.

E-mail address: jchung@hanyang.ac.kr (J. Chung).

0022-460X/03/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00521-2



The vibration of a parametrically excited system was introduced by Faraday [1], and
fundamental mathematical bases were established in Refs. [2,3]. Stephenson [4] pointed out that a
column under the influence of a periodic load might be stable even though the steady value of the
load is twice that of the Euler load. Andronov and Leontovich [5] investigated the responses of a
straight elastic column to an axial periodic load. The results showed that a column could be
unstable if half of the oscillating frequency is close to one of the natural frequencies of the lateral
motion. In this sense, a large number of papers regarding problems involving parametric
excitations have been published [6–10]. Recently, Wickert and Mote [11] discretized the
distributed parameter model using single mode expansion to assess the perturbation solution.
Wickert [12] also investigated gyroscopic dynamic systems with unsteady rotation or translation.
Pakdemirli and Ulsoy [13] investigated the stability of a string travelling with a time-dependent
velocity. Hyun and Yoo [14] studied the dynamic stability of an axially oscillating cantilever beam
considering the stiffness variation. Lin and Chen [15] studied the dynamic stability of a rotating
composite beam with a constrained damping layer subjected to axial periodic loads. The dynamic
stability of a radially rotating beam subjected to base excitation was investigated by Tan et al. [16].
They also analyzed the parametric instability of spinning pretwisted beam subjected to spin speed
perturbation [17]. With a few exceptions, most of these studies have addressed the axially
oscillating problem.
On the other hand, Yoo et al. [18] analyzed the dynamics of a rotating cantilever beam. They

presented a linear modelling method for the dynamic analysis of a flexible beam undergoing
overall motion. This modelling method employs hybrid deformation variables (including a stretch
variable) along with a special linear strain measure. The advantage of the linear modelling method
is to accurately reflect the stiffening effect due to the centrifugal force, which is poorly estimated in
the classical linear modelling method [19–21]. Base on this modelling method, Chung and Yoo
[22] derived the partial differential equations of motion for a rotating cantilever beam and
presented a finite element analysis to investigate the natural frequencies and time responses.
This study investigates the dynamic stability for the flapwise motion of a cantilever beam by

using the method of multiple scales [23,24], when the beam oscillates in the rotation direction.
Because the angular velocity of the beam is given as a harmonic function of time, the beam can be
regarded as a parametrically excited system. To describe the flapwise motion, the linear partial
differential equation of flapwise motion derived in Ref. [22] is used. Since the partial differential
equation is not only linear but also captures the motion-induced stiffness accurately, the
differential equation is adequate for the stability analysis. After the equation is transformed into a
dimensionless form, it is discretized by the Galerkin method. Applying the method of multiple
scales to the discretized equations, the stability of the beams with rotary oscillation is analyzed for
the variations of the oscillating frequency and the maximum angular speed. To verify the results
of the stability analysis, the time responses of flapwise motion are computed by the generalized-a
time integration method [25].

2. Equation of motion

A cantilever beam oscillating about the rotation axis is shown in Fig. 1 where the angular speed
OðtÞ is given by a harmonic function of time t: The cantilever beam with length L is modelled as
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the Euler–Bernoulli beam and fixed at point O of a rigid hub with a radius a: The orthogonal unit
vectors i, j and k rotate with the hub: i is along the beam before deformation, j is in the tangential
direction of the hub, and k is in the direction of the hub axis. In Fig. 1, the straight and curved
beams represent the beams before and after deformation. When point P� moves to point P; the
deformation of the beam may be described by the longitudinal deformation u; the chordwise
deformation v and the flapwise deformation w, in the directions of i, j and k, respectively.
However, this study adopts the stretch deformation s instead of the longitudinal deformation u;
because the use of stretch deformation has an advantage over the use of longitudinal deformation,
as pointed out in the introduction.
As presented in Ref. [22], the relationship between the stretch, longitudinal, chordwise and

flapwise deformations is given by

u ¼ s �
1

2

Z x

0

@v

@Z

� �2
þ

@w

@Z

� �2" #
dZ; ð1Þ

where Z is a dummy variable. The equations of motion for a cantilever beam undergoing overall
motion may be obtained by using s; v and w instead of u; v and w: The detailed procedures to
derive the equations of motion can be found in Ref. [22]. The equations of streching and
chordwise motions are coupled to each other while the equation of flapwise motion is not coupled
with the other equations. Therefore, the equation of flapwise motion can be solved independently
of the other equations.
Only the flapwise motion described by w is considered in this study. Since the excitation is

applied in the plane including the stretching and chordwise motions, the stability of the stretching
and chordwise motions can be simply guaranteed unless the oscillating frequency matches one of
those natural frequencies. However, the stability of the flapwise motion cannot be easily checked,
because the system of concern is a non-autonomous system with parametric excitation. Thus, the
stability of the flapwise motion for the rotary oscillating cantilever beam is the main issue of this
study. According to Ref. [22], when there is no applied force in the flapwise direction, the linear
partial differential equation of flapwise motion is given by

rA
@2w

@t2
þ EIy

@4w

@x4
� rAO2

@

@x
a L � xð Þ þ

1

2
L2 � x2
� �� 	

@w

@x


 �
¼ 0; ð2Þ
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Fig. 1. Configuration of a cantilever beam with rotary oscillation.
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where r is the mass density, A is the cross-sectional area, E is Young’s modulus, and Iy is the area
moments of inertia about the y-axis. The associate boundary conditions are given by

w ¼
@w

@x
¼ 0 at x ¼ 0;

@2w

@x2
¼

@3w

@x3
¼ 0; at x ¼ L: ð3Þ

It is assumed in this study that the rotary oscillating speed is prescribed by a harmonic function

O tð Þ ¼ O0 sinot; ð4Þ

where O0 is the maximum angular speed and o is the oscillating frequency.
To obtain more general results and conclusions, the equation needs to be transformed into a

dimensionless form. For the purpose of the transformation, the following dimensionless variables
need to be introduced:

w� ¼
w

L
; t� ¼

t

T
; x� ¼

x

L
; a� ¼

a

L
; O�0 ¼ TO0; o� ¼ To; ð5Þ

where

T ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
rAL4

EIy

s
: ð6Þ

Using these dimensionless variables, the equation of flapwise motion may be expressed in a
dimensionless form. Dropping the asterisks from the dimensionless equation, the equation of the
flapwise motion in the dimensionless form is given by

@2w

@t2
þ

@4w

@x4
� O20sin

2ot
@

@x
a 1� xð Þ þ

1

2
1� x2
� �� 	

@w

@x


 �
¼ 0; for 0pxp1: ð7Þ

In order to find an approximated solution in a finite dimensional function space, the Galerkin
method is used in this study. The solution of Eq. (7) is approximated by a series of comparison
functions that satisfy both the essential and natural boundary conditions. The trial function for
the approximated solution may be expressed as

wðt; xÞ ¼
XN

n¼1

unðtÞWnðxÞ; ð8Þ

where N is the total number of comparison functions, unðtÞ are unknown functions of time to be
determined, and WnðxÞ are the eigenfunctions for the bending vibration of the stationary
cantilever beam:

WnðxÞ ¼ cosh anx � cos anx �
sinh an � sin an

cosh an þ cos an

sinh anx � sin anxð Þ; ð9Þ

in which an are the roots of

cos ancosh an þ 1 ¼ 0: ð10Þ

The weighting function or the virtual function corresponding to Eq. (8) is given by

%wðt; xÞ ¼
XN

n¼1

%unðtÞWnðxÞ; ð11Þ
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where %unðtÞ are arbitrary functions of time. It is noted that the comparison functionsWnðxÞ satisfy
the associated boundary conditions given by

w ¼
@w

@x
¼ 0 at x ¼ 0;

@2w

@x2
¼

@3w

@x3
¼ 0 at x ¼ 1: ð12Þ

Discretized equations of motion are determined by using Eqs. (8) and (11). Consider an
equation obtained by substituting Eq. (8) into Eq. (7), multiplying the resultant equation by
Eq. (11) and then integrating it over the domain 0pxp1: If this equation is collected with respect
to %unðtÞ; their coefficients provide the discretized equations since %unðtÞ are arbitrary. The
discretized equations of flapwise motion may then be expressed as

.un þ o2nun þ 4e sin
2ot

XN

m¼1

fnmum ¼ 0 for n ¼ 1; 2;?;N; ð13Þ

where the superposed dot represents the differentiation with respect to time; on; e and fnm are
given by

on ¼
Z 1

0

Wn

d4Wn

dx4
dx

� �1=2
; e ¼

O20
4
;

fnm ¼ �
Z 1

0

Wn

d

dx
a 1� xð Þ þ 1

2
1� x2
� �� � dWm

dx


 �
dx: ð14Þ

Note that the dimensionless natural frequency of the stationary cantilever beam, on; is equal to
the square of the root of Eq. (10), a2n:

3. Method of multiple scales

The method of multiple scales is used to investigate the stability of the cantilever beam with
rotary oscillation. Eq. (13) represents a typical parametrically excited system since the last term on
the left-hand side of Eq. (13) is a periodic function of time. Following the method of multiple
scales, the solution of Eq. (13) can be constructed by using a three-term approximation:

unðt; eÞDun0ðT0; T1; T2Þ þ eun1ðT0; T1; T2Þ þ e2un2ðT0; T1; T2Þ; ð15Þ

where Tk are independent variables defined by

Tk ¼ ekt for k ¼ 0; 1; 2: ð16Þ

Note that T0 and T1 are called the fast scale and the slow scale respectively. The fast scale is
associated with changes occurring at the frequencies o and on; while the slow scale is associated
with modulations in amplitudes and phases occurring at frequencies much lower than o and on:
Substituting Eq. (15) into Eq. (13) and collecting the resultant equation in terms of e; the

coefficients of e0; e1 and e2 provide the following partial differential equations:

D20un0 þ o2nun0 ¼ 0; ð17Þ

D20un1 þ o2nun1 ¼ �2D0D1un0 þ expð2ioT0Þ þ expð�2ioT0Þ � 2½ �
XN

r¼1

fnrur0; ð18Þ
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D20un2 þ o2nun2 ¼ � 2D0D2un0 � D21un0 � 2D0D1un1

þ expð2ioT0Þ þ expð�2ioT0Þ � 2½ �
XN

r¼1

fnrur1; ð19Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
and Dk ¼ @=@Tk: It should be noted that the effective excitation frequency is 2o

in Eqs. (18) and (19), which is originated from sin2ot of Eq. (13). This is different from other
problems. For instance, the equation of motion for an axially oscillating cantilever beam has sinot

instead of sin2ot.

3.1. First order expansion

Related to the first order expansion, the transient curves, which divide stable and unstable
regions, can be achieved by considering only un0 and un1 from Eq. (15). The general solution of
Eq. (17) can be written in the form

un0 ¼ AnðT1; T2ÞexpðionT0Þ þ cc; ð20Þ

where An are the complex amplitudes slowly varying with time and cc represents the complex
conjugate of the preceding term. It should be noted that An are complex functions of only T1 and
T2: Introduction of Eq. (20) into Eq. (18) leads to

D20un1 þ o2nun1 ¼ � 2ionD1AnexpðionT0Þ

þ
XN

r¼1

fnrAr exp½iðor þ 2oÞT0� þ exp½iðor � 2oÞT0� � 2expðiorT0Þf g þ cc: ð21Þ

The complex functions An should be chosen to satisfy the conditions that un1 are bounded. If the
terms on the right-hand side of Eq. (21) have the excitation frequency on; resonance occurs
because the excitation frequency coincides with the natural frequency. These trouble terms, called
the secular terms, should be eliminated from the right-hand side of Eq. (21).
Consider the case that o is away from ðoq7opÞ=2 for all possible positive integer values of p

and q: In this case the secular terms are eliminated when the following condition is satisfied:

ionD1An þ fnnAn ¼ 0 for all n: ð22Þ

The particular solutions of Eq. (21), when o is away from ðoq7opÞ=2; are given by

un1 ¼ �
XN

r¼1

fnrAr
exp½iðor þ 2oÞT0�

ðor þ 2oÞ
2 � o2n

þ
exp½iðor � 2oÞT0�

ðor � 2oÞ
2 � o2n

( )

þ 2
XN

r¼1;ran

fnrAr

expðiorT0Þ
o2r � o2n

þ cc: ð23Þ

Related to the stability criteria of the cantilever beam with rotary oscillation, the transient
curves can be obtained from the conditions to eliminate the secular terms from approximate
solutions. As shown in Table 1, there does not exist the case where o is simultaneously near
ðop þ oqÞ=2 and ðol � okÞ=2 for any integer values of p; q; l and k: In addition, since fpq are
symmetric, namely, fpq ¼ fqp; as illustrated in Table 2, there is no unstable solution for the case
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where o is near ðoq � opÞ=2: The reason is that unstable solutions occur when fpq and fqp have
different signs [24]. Therefore, the transient curves need to be considered only when o is near
ðop þ oqÞ=2:
When o is near ðop þ oqÞ=2; the nearness of o to ðop þ oqÞ=2 can be expressed by introducing

a detuning parameter s1 defined by

o ¼
1

2
ðop þ oqÞ þ

1

2
es1: ð24Þ

After substituting Eq. (24) into Eq. (21), application of the conditions to eliminate the secular
terms yields

2iopD1Ap þ 2fppAp � fpq %Aqexpðis1T1Þ ¼ 0; ð25Þ

2ioqD1Aq þ 2fqqAq � fqp %Apexpðis1T1Þ ¼ 0; ð26Þ

where %Ap and %Aq are the complex conjugates of Ap and Aq: From the condition that non-trivial
solutions of Eqs. (25) and (26) should be bounded, the transition curves, separating the e2o plane
into stable and unstable regions, are obtained. The transition curves for the first order
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Table 1

Characteristic values an and the dimensionless natural frequencies on of the stationary cantilever beam

n an on

1 1.875104 3.516015

2 4.694091 22.034492

3 7.854757 61.697214

4 10.995541 120.901916

5 14.137168 199.859530

6 17.278760 298.555531

7 20.420352 416.990786

8 23.561944 555.165248

9 26.703538 713.078918

10 29.845130 890.731797

Table 2

Values of fnm of the rotary oscillating cantilever beam when a ¼ 0

m

n 1 2 3 4 5

1 1.193336 �0.685855 �0.792379 �0.546413 �0.454075
2 �0.685855 6.478225 0.169408 �2.911851 �1.889167
3 �0.792379 0.169408 17.859520 3.274272 �6.154417
4 �0.546413 �2.911851 3.274272 36.055388 8.570157

5 �0.454075 �1.889167 �6.154417 8.570157 60.801076
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approximation are given by

o ¼
1

2
ðop þ oqÞ þ

1

2
e Gpq7

ffiffiffiffiffiffiffiffi
Lpq

p� �
; ð27Þ

where

Gpq ¼
fpp

op

þ
fqq

oq

; Lpq ¼
fpqfqp

opoq

: ð28Þ

3.2. Second order expansion

The transient curves for the second order expansion are obtained from the conditions that the
solutions for un0; un1 and un2 should be bounded. Since the conditions to eliminate secular terms
for un0 and un1 have been investigated in the previous section, the conditions for un2 will be
examined in this section. Introduction of Eqs. (20) and (23) into Eq. (19) leads to

D20un2 þ o2nun2 ¼ � ð2ionD2An þ D21AnÞexpðionT0Þ

�
XN

r¼1

XN

s¼1

fnrfrsAs

exp½iðos þ 4oÞT0� � 2exp½iðos þ 2oÞT0� þ expðiosT0Þ

ðos þ 2oÞ
2 � o2r

(

þ
exp½iðos � 4oÞT0� � 2exp½iðos � 2oÞT0� þ expðiosT0Þ

ðos � 2oÞ
2 � o2r

)

þ 2
XN

r¼1

XN

s¼1;sar

fnrfrsAs
exp½iðos þ 2oÞT0� þ exp½iðos � 2oÞT0� � 2expðiosT0Þ

o2s � o2r


 �

þ 2i
XN

r¼1

fnrD1Ar
ðor þ 2oÞexp½iðor þ 2oÞT0�

ðor þ 2oÞ
2 � o2n

þ
ðor � 2oÞexp½iðor � 2oÞT0�

ðor � 2oÞ
2 � o2n

( )

� 4i
XN

r¼1;ran

fnrD1Ar
orexpðiorT0Þ

o2r � o2n
þ cc: ð29Þ

Since Eq. (23) is obtained when o is far from ðoq þ opÞ=2 and this equation is used to derive
Eq. (29), under any resonance conditions the last two terms on the right-hand side of Eq. (29) do
not produce the secular terms in un2: Therefore, these terms will not be considered in this section.
When o is away from both ðoq þ opÞ=2 and ðol þ okÞ=4 for all possible integer values of p; q; k

and l; the secular terms are eliminated from un2 if the following condition is satisfied:

2ionD2An þ D21An þ 2onwnAn ¼ 0; ð30Þ

where

wn ¼
1

2on

XN

r¼1

fnrfrn

1

ðon þ 2oÞ
2 � o2r

þ
1

ðon � 2oÞ
2 � o2r

" #

þ
2

on

XN

r¼1ran

fnrfrn

o2n � o2r
: ð31Þ
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Using Eqs. (22) and (30), it is easily proved that An is bounded. Therefore, the solution of un2 is
stable if o is away from both ðoq þ opÞ=2 and ðol þ okÞ=4:
Next, consider the case in which o is near ðop þ oqÞ=2: Using the detuning parameter defined

by Eq. (24), the conditions that the secular terms are eliminated from un2 may be expressed as

2iopD2Ap þ D21Ap þ 2op #wpAp � 2opZpq
%Aq expðis1T1Þ ¼ 0; ð32Þ

2ioqD2Aq þ D21Aq þ 2oq #wqAq � 2oqZqp
%Apexpðis1T1Þ ¼ 0; ð33Þ

where

#wp ¼
1

2op

XN

r¼1

fprfrp

ðop þ 2oÞ
2 � o2r

þ
XN

r¼1;raq

fprfrp

ðop � 2oÞ
2 � o2r

þ 4
XN

r¼1;rap

fprfrp

o2p � o2r

" #
; ð34Þ

Zpq ¼
1

2op

XN

r¼1;rap

fprfrq

ðoq � 2oÞ
2 � o2r

þ
XN

r¼1;raq

fprfrq

o2q � o2r

" #
: ð35Þ

Note that Ap and Aq are functions of both T1 and T2: Hence, both the first and second order
expansions should be considered simultaneously. For this purpose, combining Eqs. (25) and (32)
as well as Eqs. (26) and (33), the following equations may be obtained:

2iop

dAp

dt
þ 2efpp þ e2

1

4
Lpq �

f 2pp

o2p
þ 2op #wp

 !" #
Ap

þ �efpq þ e2
fppfpq

2o2p
�

fqqfpq

2opoq

� 2opZpq þ
s1fpq

2op

 !" #
%Aq expðies1tÞ ¼ 0; ð36Þ

2ioq

dAq

dt
þ 2efqq þ e2

1

4
Lpq �

f 2qq

o2q
þ 2oq #wq

 !" #
Aq

þ �efqp þ e2
fqqfqp

2o2q
�

fppfqp

2opoq

� 2oqZqp þ
s1fqp

2oq

 !" #
%Apexpðies1tÞ ¼ 0: ð37Þ

For a similar reason as before, Eqs. (36) and (37) should have non-trivial solutions whose
magnitudes are bounded. From theses conditions, the transient curves can be determined. The
transient curves of the second order expansion when o is near ðop þ oqÞ=2 may be expressed by

o ¼
1

2
ðop þ oqÞ þ

1

2
e Gpq7

ffiffiffiffiffiffiffiffi
Lpq

p� �
�
1

16
e2

4Fpq þ Lpq
1

op

þ
1

oq

� �
� 8 #wp þ #wq

� ��
74

ffiffiffiffiffiffiffiffi
Lpq

p
Ppq � 2

op

fpq

Zpq � 2
oq

fqp

Zqp

� �	
; ð38Þ

where

Fpq ¼
f 2pp

o3p
þ

f 2qq

o3q
; Ppq ¼

fpp

o2p
þ

fqq

o2q
: ð39Þ
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Finally, consider the case that o is near ðop þ oqÞ=4: Similarly to Eq. (24), a detuning
parameter s2 is used, which is defined by

o ¼
1

4
ðop þ oqÞ þ

1

4
es2: ð40Þ

After substituting Eq. (40) into Eq. (29), from the conditions that the secular terms are
eliminated, the following equations can be obtained:

2iopD2Ap þ D21Ap þ 2opwpAp þ 2opmpq
%Aqexpðis2T1Þ ¼ 0; ð41Þ

2ioqD2Aq þ D21Aq þ 2oqwqAq þ 2oqmqp
%Apexpðis2T1Þ ¼ 0: ð42Þ

where

mpq ¼
1

2op

XN

r¼1

fprfqr

ðoq � 2oÞ
2 � o2r

: ð43Þ

As pointed out in the previous paragraph, since Ap and Aq are functions of both T1 and T2; both
the first and second order expansions should also be considered simultaneously. Combining
Eqs. (25) and (41) results in

2iop

dAp

dt
þ 2efpp þ e2 2opwp �

f 2pp

o2p

 !" #
Ap þ 2e2opmpq

%Aq expðies2tÞ ¼ 0; ð44Þ

while combining Eqs. (26) and (42) results in

2ioq

dAq

dt
þ 2efqq þ e2 2oqwq �

f 2qq

o2q

 !" #
Aq þ 2e2oqmqp

%Ap expðies2tÞ ¼ 0: ð45Þ

From the conditions that Eqs. (44) and (45) have bounded non-trivial solutions, the transient
curves, when o is near ðop þ oqÞ=4; may be expressed as

o ¼
1

4
ðop þ oqÞ þ

1

4
eGpq þ

1

8
e2 2 wp þ wq

� �
� Fpq74

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mpqmqp

ph i
: ð46Þ

Although, in general cases, the second order transient curves may exist around oDðop � oqÞ=4;
such is not true for the cantilever beam with rotary oscillation.

4. Stability analysis

The stability of a cantilever beam with rotary oscillation is analyzed for variations of the
oscillating frequency and the maximum angular speed. For simplicity, the hub radius a is assumed
as zero and discussion of the first order expansion is omitted from this paper. In order to obtain
the transient curves and time responses, the dimensionless partial differential Eq. (7) is discretized
into 10 ordinary differential equations. In other words, N in Eq. (13) is selected as 10. The
transient curves obtained from the second order expansion are plotted in Fig. 2 for the variations
of o=o1 and e=o21: In Fig. 2, the hatched parts represent the unstable region and the remaining
part represents the stable region. The boundaries of the unstable regions for o ¼ o1; ðo1 þ o2Þ=2
and o2 are defined by Eq. (38) while those of the unstable regions for o ¼ o1=2; ðo1 þ o2Þ=4;
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o2=2; ðo1 þ o3Þ=4 and ðo2 þ o3Þ=4 are defined by Eq. (46). It is interesting to observe that the
unstable regions near o ¼ ðop þ oqÞ=2 are relatively larger than those near o ¼ ðop þ oqÞ=4: In
fact, the unstable regions obtained from the first order expansion are not much different from the
unstable regions near o ¼ ðop þ oqÞ=2 of Fig. 2. It is also seen in Fig. 2 that the unstable regions
become large as the maximum angular speed, i.e., e=o21 increases.
The results of the stability analysis are verified by investigating the time responses. Applying the

generalized-a time integration method [25] to the discretized equations given by Eq. (13), the time
responses for the flapwise displacement are computed at the free end of the beam. The beam is
initially deformed by a static force at the free end. The displacement at the free end is 0.01 and the
beam is released from rest. The algorithmic parameters of the generalized-a method are selected
for the case without numerical dissipation and the time step size for numerical integration is 0.01.
Time responses are computed for 12 points marked in Fig. 3.
First, the time responses when o is near ðop þ oqÞ=2 are examined. For three points that are

located at oDo1; time responses are computed and presented in Fig. 4. The co-ordinates of points
A1; A2 and A3 in Fig. 3 are (1.0, 0.35), (1.33, 0.2) and (1.33, 0.35). Points A1 and A2 are in the
stable region but point A3 is in the unstable region, as shown in Fig. 3. Fig. 4(a) demonstrates that
the time response for point A1 is bounded by a limited value, even though the excitation frequency
is equal to the first natural frequency of the stationary cantilever, namely, o1:When the oscillation
frequency and the maximum angular speed correspond to point A2; the time response, as shown in
Fig. 4(b), has frequency modulation and it is also bounded. However, for point A3; which is inside
the unstable region, the amplitude of the time response increases with time, as illustrated in
Fig. 4(c). Therefore, it is verified that the stability results of Fig. 3 well agree with the behaviours
of the time responses of Fig. 4. When the oscillating frequency o is near ðo1 þ o2Þ=2; time
responses are also examined for points B1(3.68, 0.2) and B2(3.83, 0.2). Since the time responses of
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Fig. 2. Stability plot of the second order expansion for the cantilever beam with rotary oscillation.
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Fig. 5 are bounded and unbounded for B1 and B2; respectively, the stability analysis near o ¼
ðo1 þ o2Þ=2 is reliable. Similarly, the stability can be verified in the neighbourhood of o ¼ o2:
Fig. 6 shows time responses for points C1(6.2669, 0.3), C2(6.56, 0.15) and C3(6.56, 0.3) of Fig. 3.
Because the time responses for points C1 and C2 are bounded and the response for point C3 is
unbounded, the behaviours of the time responses well coincide to the stability results of Fig. 2.
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Fig. 3. Points selected to verify the stability of the cantilever beam with rotary oscillation.
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Fig. 4. Time responses of the cantilever beam with rotary oscillation for (a) point A1ð1:0; 0:35Þ; (b) point A2ð1:33; 0:2Þ
and (c) point A3(1.33, 0.35).
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Next, the stability results around o ¼ ðop þ oqÞ=4 are investigated. Consider points D1(0.5, 0.3)
and D2(0.64, 0.3) of Fig. 3, which are located near o ¼ o1=2: These two points are in the stable
and unstable regions, respectively. Time responses computed at points D1 and D2; plotted in Fig.
7, show bounded and unbounded responses. Hence, it can be said that the stability results near
o ¼ o1=2 are validated. Consider the case that the oscillating frequencies are near o ¼
ðo1 þ o2Þ=4 and o ¼ o2=2: Points E1(2.011, 0.4) and E2(3.27, 0.3) are in the unstable regions of
Fig. 3. As expected, time responses corresponding to points E1 and E2 increase with time as
presented in Fig. 8. In contrast to the other time responses, the vibration amplitudes very slowly
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Fig. 5. Time responses of the cantilever beam with rotary oscillation for (a) point B1ð3:63; 0:2Þ and (b) point
B2(3.83, 0.2).
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Fig. 6. Time responses of the cantilever beam with rotary oscillation for (a) point C1ð6:2669; 0:3Þ; (b) point
C2ð6:56; 0:15Þ and (c) point C3(6.56, 0.3).
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increase with time. However, the unstable regions near o ¼ ðo1 þ o3Þ=4 and o ¼ ðo2 þ o3Þ=4 are
too narrow to find a point at which a time response becomes unstable. Numerical errors in the
computed natural frequencies on of Table 1 and the values fnm of Table 2 may make it difficult to
find a point where a time response is unbounded. In fact, even if points E3(4.763101039, 0.25) and
E4(6.072859571, 0.25) are inside numerically computed stable regions, time responses correspond-
ing to these points do not exhibit unstable behaviours even over a very long duration, e.g., 1000.
Finally, it is interesting to discuss the unstable time responses in more detail. Note that the

unstable responses when oEop grow dramatically with time, as shown in Figs. 4(c) and 6(c),
while the unstable responses when oEop=2; ðop þ oqÞ=2 or ðop þ oqÞ=4 grow gradually, as
shown in Figs. 5(b), 7(b) and 8. This implies that only the primary resonance corresponding to
oEop possesses a rapid increase in amplitude. The secondary resonance when oEop=2 and the
combination resonance when oEðop þ oqÞ=2 or ðop þ oqÞ=4 show a slow increase in amplitude.
One more interesting phenomenon can be observed in Figs. 5(b) and 6(c). The time responses
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Fig. 7. Time responses of the cantilever beam with rotary oscillation for (a) point D1ð0:5; 0:3Þ and (b) point
D2(0.64, 0.3).
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Fig. 8. Time responses of the cantilever beam with rotary oscillation for (a) point E1ð2:011; 0:4Þ and (b) point
E2ð3:27; 0:3Þ:
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shown in these figures have two main frequency components: one is near o1 and the other is near
o2: Comparison of these frequencies yields the fact that o2 is approximately three times of o1;
that is, o2E3o1: Therefore, it may be concluded that the internal resonance occurs in the
responses plotted in Figs. 5(b) and 6(c).

5. Conclusions

The dynamic stability of the flapwise motion is analyzed for the cantilever beam with rotary
oscillation. To describe the flapwise motion, this study adopts the linear partial differential
equation with parametric excitation, which is derived by using stretch deformation instead of the
conventional longitudinal deformation. After this partial differential equation is transformed to a
dimensionless equation, it is discretized by the Galerkin method. By applying the method of
multiple scales to the discretized equations, the stability plot is obtained for the variations of the
oscillating frequency and the maximum angular speed, and then the stability of the flapwise
motion is investigated. The results of the stability analysis are verified by time responses computed
at several points on the stability plot.
The results of the stability analysis can be summarized as follows:

(1) The unstable regions exist when the oscillating frequency o is near ðop þ oqÞ=2 or ðop þ
oqÞ=4; where op and oq are the natural frequencies of the stationary cantilever beam and p

and q are positive integers.
(2) The unstable regions become large as the maximum angular speed increases.
(3) The unstable regions when oDðop þ oqÞ=2 are relatively larger than those when oDðop þ

oqÞ=4:
(4) The unstable regions when oDðo1 þ o3Þ=2 or oDðo2 þ o3Þ=2 are too narrow to find points
at which time responses become unstable.
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